Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Plant litter decomposition is a primary control on carbon fluxes in terrestrial ecosystems around the world. Individually, the key mediators of decomposition rates—litter traits, temperature, and moisture—are relatively well understood. However, our understanding of how combined drivers influence decomposition remains limited. To test how multiple, interactive climate change factors directly alter decomposition rates and indirectly influence leaf litter decomposition rates by altering substrate chemistry, we conducted two decomposition experiments within the Boreal Forest Warming at an Ecotone in Danger (B4WarmED) study in Minnesota, USA. Our first experiment decomposed ambient-grown leaf litter from eight common tree species under a factorial combination of warming and rainfall reduction treatments. We found that the direct effects of combined warming and rainfall reduction increased litter half-life by 42% ± 11% in comparison to ambient plots with no warming or rainfall reduction. In contrast, only rainfall reduction influenced litter mean residence time, which increased by 37% ± 18% in comparison to ambient rainfall plots. Our second experiment decomposed ambient- and warm-grown leaf litter from the same eight species under ambient and warmed conditions. We found that warming slowed decomposition of both litter types, but warm-grown litter had a 22% ± 6.5% shorter half-life than ambient-grown leaf tissue under ambient environmental conditions. Warm grown litter half-life then increased by 36% ± 11% with warmed environmental conditions. Our results highlight that climate change could slow carbon and nutrient cycling in systems where moisture becomes a limiting factor. In addition, our study demonstrates that there may be an overlooked relationship between the growth conditions of plants and the temperature of decomposition. This nuanced understanding of decomposition can then support carbon cycling models and more effective nature-based climate mitigation efforts.more » « lessFree, publicly-accessible full text available May 12, 2026
-
Nikel, Pablo Ivan (Ed.)ABSTRACT Bacteria are major drivers of organic matter decomposition and play crucial roles in global nutrient cycling. Although the degradation of dead fungal biomass (necromass) is increasingly recognized as an important contributor to soil carbon (C) and nitrogen (N) cycling, the genes and metabolic pathways involved in necromass degradation are less characterized. In particular, how bacteria degrade necromass containing different quantities of melanin, which largely control rates of necromass decompositionin situ, is largely unknown. To address this gap, we conducted a multi-timepoint transcriptomic analysis using three Gram-negative, bacterial species grown on low or high melanin necromass ofHyaloscypha bicolor. The bacterial species,Cellvibrio japonicus, Chitinophaga pinensis, andSerratia marcescens, belong to genera known to degrade necromassin situ. We found that while bacterial growth was consistently higher on low than high melanin necromass, the CAZyme-encoding gene expression response of the three species was similar between the two necromass types. Interestingly, this trend was not shared for genes encoding nitrogen utilization, which varied inC. pinensisandS. marcescensduring growth on high vs low melanin necromass. Additionally, this study tested the metabolic capabilities of these bacterial species to grow on a diversity of C and N sources and found that the three bacteria have substantially different utilization patterns. Collectively, our data suggest that as necromass changes chemically over the course of degradation, certain bacterial species are favored based on their differential metabolic capacities.IMPORTANCEFungal necromass is a major component of the carbon (C) in soils as well as an important source of nitrogen (N) for plant and microbial growth. Bacteria associated with necromass represent a distinct subset of the soil microbiome and characterizing their functional capacities is the critical next step toward understanding how they influence necromass turnover. This is particularly important for necromass varying in melanin content, which has been observed to control the rate of necromass decomposition across a variety of ecosystems. Here we assessed the gene expression of three necromass-degrading bacteria grown on low or high melanin necromass and characterized their metabolic capacities to grow on different C and N substrates. These transcriptomic and metabolic studies provide the first steps toward assessing the physiological relevance of up-regulated CAZyme-encoding genes in necromass decomposition and provide foundational data for generating a predictive model of the molecular mechanisms underpinning necromass decomposition by soil bacteria.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available November 1, 2025
-
The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal–temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksianaandBetula papyrifera) and two temperate (Pinus strobusandQuercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal–temperate ecotone.more » « less
An official website of the United States government
